CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran

نویسندگان

  • Hamid Moeini Department of Mining and Metallurgy, Faculty of Engineering, University of Yazd, Yazd, Iran
  • Vahid Khosravi Department of mining, Faculty of Engineering, University of Birjand, Birjand, Iran
چکیده مقاله:

Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomalous zones in Dehsalm area which is located in 90 km of SW-Nehbandan, a town in South Khorasan province, Iran. The compositional robust factor analysis (CRFA) was applied as a tool to help select a meaningful subset as an input to Continuous Restricted Boltzmann Machine (CRBM). The dataset consists of 635 stream sediment geochemical samples analyzed for 21 elements. Using CRFA, the 3rd factor (i.e. Pb, Zn, Cu, Ag, Sb, Sr, Ba, Hg and W), indicating epithermal mineralization in the area, was considered as an input set to CRBM. The best-performed CRBM with 80 hidden units and stabilized parameters at 150 iterations was finalized and trained on all the geochemical samples of the study area. Average square contribution (ASC) and average square error (ASE) were determined as anomaly identifiers on the reconstructed error of the trained CRBM. A statistical threshold was applied on the values of the criteria (ASC & ASE) and the resulting outputs were mapped to delineate the anomalous samples. The maps indicated that ASC and ASE have the same performance in the multivariate geochemical anomaly recognition. The anomalies were spatially confirmed with the mineral indexes of Pb, Zn, Cu and Sb, as well as several active mines of Pb and Cu in the study area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local multivariate outliers as geochemical anomaly halos indicators, a case study: Hamich area, Southern Khorasan, Iran

Anomaly recognition has always been a prominent subject in preliminary geochemical explorations. Among the regional geochemical data processing, there are a range of statistical and data mining techniques as well as different mapping methods, which serve as presentations of the outputs. The outlier’s values are of interest in the investigations where data are gathered under controlled condition...

متن کامل

anomaly recognition in stream sediment geochemical exploration using factor analysis in mesgaran area of birjand, eastern iran

a combination of elements is usually used in reconnaissance geochemical exploration and distribution maps are drawn to identify probable anomalies. in this study, 102 stream sediment samples from the arid environment of mesgaran area, eastern iran, were investigated using r-mode factor analysis. a four-factor model with a cumulative variance of 75.90% clearly indicated group associations of the...

متن کامل

local multivariate outliers as geochemical anomaly halos indicators, a case study: hamich area, southern khorasan, iran

anomaly recognition has always been a prominent subject in preliminary geochemical explorations. among the regional geochemical data processing, there are a range of statistical and data mining techniques as well as different mapping methods, which serve as presentations of the outputs. the outlier’s values are of interest in the investigations where data are gathered under controlled condition...

متن کامل

Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 54  شماره 1

صفحات  33- 38

تاریخ انتشار 2020-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023